
Dual-Purpose Hardware Algorithms and Architectures – Part 1: Floating-Point

Division

Jihee Seo1,2 and Dae Hyun Kim2

1Synopsys, Inc., Hillsboro, OR, USA
2School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

jiheeseo@synopsys.com, daehyun.kim@wsu.edu

Abstract—Division is a time-consuming, but frequently-used
arithmetic operation, so an enormous amount of effort has been
made to improve the performance of dividers. Most of the division
algorithms in the literature are offline algorithms that minimize
the execution time of a single division, whereas some others
are online algorithms that maximize the throughput (# divisions
executed per time). In this paper, we propose an interval-analysis-
based normal-binary floating-point division algorithm that can
be used for both offline and online division. We implement two
offline and four online dividers using the algorithm and compare
them with recently-proposed offline and online dividers. The
simulation results show that the offline versions are the best
for a Binary64 offline division, whereas the online versions are
the best for a Binary64 online division.

Index Terms—Divider; Floating-Point Arithmetic; Online Di-
vision;

I. INTRODUCTION

Division is one of the most commonly-used arithmetic oper-

ations, but it is often a serious performance bottleneck [1], [2].

Therefore, many researchers have put a great amount of effort

in the design of high-performance dividers [3]. Meanwhile,

computer architectures have been improved for both high-

speed and high-throughput computing. A high-speed design

minimizes the execution time of a single operation, whereas a

high-throughput design maximizes the throughput (the number

of operations executed per unit time) [4]. Most of the division

algorithms aim for high-speed division [5]–[9].

Pipelining of an arithmetic unit for an operation splits the

logic into n stages so that several independent operations of

the same type can be executed sequentially in the pipeline

stages. In this case, the throughput increases roughly by n×.

Thus, pipelining is a representative technique to increase the

throughput at the cost of additional flip-flops. Unfortunately,

pipelining cannot improve the throughput when operations are

dependent on each other. For example, (a/b)/c is decomposed

into i1 : x = a/b and i2 : y = x/c where the dividend of i2
is the result of i1, so i2 is dependent on i1. In this case, the

execution of i2 has to wait until i1 has finished. Although some

architecture-level techniques such as out-of-order execution

can help resolve the dependencies, they cannot completely

resolve all the dependencies among arithmetic operations.

Online algorithms enable the parallel execution of i1 and

i2 by passing partial results of i1 to the arithmetic unit

executing i2 and utilizing them for the computation of i2,

thereby reducing the overall execution time and improving the

throughput. Thus, several online division algorithms have also

been proposed in the literature [10]–[16].

In this paper, we present a normal-binary floating-point

division algorithm that can be used for both offline and

online (dual-purpose) floating-point division. A special case

of the algorithm is the normal-binary floating-point offline

division in [17]. Our contributions in this paper are as follows:

• The division algorithm we propose uses the conventional

non-redundant binary (normal binary) number system, so

it does not require hardware for the conversion between

redundant and non-redundant binary number systems.

• The algorithm can be used for both offline and online

division.

• The algorithm fully utilizes all the given dividend bits.

In addition, if the divisor of a division is fully given at

the beginning of the division, the division algorithm fully

utilizes the divisor. These two features help reduce the

execution time significantly.

• The algorithm works on any number of dividend and

divisor bits given.

The rest of this paper is organized as follows. We show

the motivation of this paper and review online and digit-

recurrence division in Section II. In Section III, we review

the normal-binary floating-point offline division and derive

it using interval analysis. In Section IV, we present normal-

binary floating-point online division using interval analysis.

Then, we show hardware implementation of the algorithm in

Section V. In Section VI, we compare several offline and

online dividers, then we conclude in Section VII.

II. PRELIMINARIES

In this section, we show the motivation of this paper and

review online and digit-recurrence division.

A. Motivation

Data dependencies among arithmetic operations occur fre-

quently in many applications. For example, the following code

is used in GNU Scientific Library (GSL):
√

a

b
· (c · cos x+ d · e · sin y). (1)

For
√

a/b in the code, we should compute a/b before

computing its square root. In this case, online square root

algorithms [18] can reduce the overall execution time of
√

a/b.

Cycle2

Cycle1

Cycle3

Offline divider Online divider (conventional) Online divider (ours)

x

d

x

d

x q+

q-

q+

q-

q+

q-

d

x q

d

x

d

x

d

x

d

x q

d

x

d

x

d

x

d

x q

d

(Given)

(Given)

(Given)

(Used) (Obtained)

(Obtained)

(Obtained)

(Used) (Obtained)

(Obtained)

(Obtained)

(Used) (Obtained)

(Obtained)

(Obtained)

(Used) (Used) (Used)

(Used) (Used) (Used)

x d

Offline divider

x d

q+ q-

Online divider

x d

q

Our divider

: unknown /
 not given operand(x,d)

: available /
 given operand(x,d)

: used operand(x,d)
 in the divider

: obtained quotient(q) q+ q-

q+

q-

q+

q-

q+

q-

Fig. 1. An overview of the operations of offline, online, and the proposed dividers for an online division.

TABLE I
EXECUTION TIME REDUCTION BY ONLINE ARITHMETIC

Benchmark MM DM MD DD Total

FEM 0% 0.58% 3.85% 0.36% 4.79%
EM simulation 5.71% 0% 0% 0% 5.71%

Statistical inference 0.56% 0.25% 0.33% 0.43% 1.57%
Bessel function 23.61% 0% 1.47% 2.96% 28.04%

For a quantitative analysis of the effectiveness of online

arithmetic, we used a cycle-accurate architecture simulator

with several benchmarks to simulate online arithmetic. In this

analysis, we focused on four data dependencies as follows:

• Multiply-multiply (MM): (a× b)× c or a× (b× c)
• Multiply-divide (MD): (a× b)/c and a/(b× c)
• Divide-multiply (DM): (a/b)× c or a× (b/c)
• Divide-divide (DD): (a/b)/c and a/(b/c)

In this analysis, we assumed ideal online multipliers and

dividers that can (1) start their computations two cycles after

the first digits of the dependent operands are received and

(2) generate one digit every clock cycle from that.

Table I shows the execution time reduction by each online

arithmetic. For example, the use of online dividers that can

resolve the multiply-divide (MD) dependency reduces the

execution times of the four benchmarks by 3.85%, 0%, 0.33%,

and 1.47%, respectively. The EM simulation does not benefit

from it because it does not have MD dependencies among

the instructions. The use of online dividers that can resolve

the DD dependency reduces the execution time of the Bessel

function benchmark by 2.96%.

B. Online Division

As explained in Section I, several online division algorithms

have been proposed in the literature [10]–[16] and most of

them use digit-recurrence division algorithms. For example,

the online division algorithm proposed in [10] obtains a new

digit of the quotient of a division using a selection function

based on the digit-recurrence algorithm upon receiving an

additional digit of each operand. However, it should obtain

a quotient digit from incomplete operands while guaranteeing

the convergence of the quotient. Trivedi [11] extended [10] to

a radix-4 online division algorithm. Tenca [16] modified the

online division algorithm presented in [19] and improved the

performance of the algorithm at the cost of increased area.

In this paper, we propose a dual-purpose division algorithm

that can be used for both offline and online division. If the

dividend and the divisor of a division are offline (fully given

at time 0), the division algorithm works as an offline algorithm,

i.e., it utilizes all the given bits. If one or both of the operands

are online, then the algorithm works as an online algorithm

and tries to find quotient bits from the partially given operands.

Fig. 1 shows an overview of the operations of offline and

online dividers for an online division. The operands are given

in three clock cycles (shown in the leftmost column). An

offline divider needs complete operands, so it waits for two

clock cycles without any computation. On the other hand, an

online divider starts the division with the incomplete operands

in the first cycle and obtain some quotient digits. Notice that

online dividers generally use redundant number systems (q+

and q− in the figure). In the second and third cycles, it uses

more operand digits and obtains more quotient digits. In the

proposed divider, we use all the dividend and divisor digits

given at the first cycle and obtain quotient digits, which is

the biggest difference between the proposed and other online

dividers. Notice also that our divider uses the normal binary

number system.

C. Digit-Recurrence Floating-Point Division

For x = d · q + rem, radix-r digit-recurrence division

algorithms use the condition |rem| < |d| · ulp where ulp is

the unit in the last place (r−n for q =
∑n

i=0 qi · r
−i). This

condition is converted into the following recurrence formula

w[j + 1] = r · w[j]− d · qj+1 (2)

and a digit-selection function SEL(w[j], d) [19]. Each digit

qi is one of Da = {−a,−a+1, · · · a−1, a} for a certain a and

the algorithms use redundant binary number systems for the

division. Many digit-recurrence division algorithms are based

on this basic division framework [5]–[7], [9].

III. NORMAL-BINARY OFFLINE DIVISION

In this section, we review the floating-point offline division

algorithm using the normal binary number system [19].

A. Notations and Assumptions

In the division x = d ·q+rem, x, d, and q are the dividend,

the divisor, and the quotient, respectively. The IEEE standard

for floating-point arithmetic [20] uses a separate bit for the

sign of an operand and assumes normalized operands. Thus,

we assume that x, d ∈ [1, 2). As a result, the division above

should satisfy the following condition:

0 ≤ rem < d · ulp. (3)

The quotient should also be rounded and normalized after

division. The quotient obtained up to the j-th digit is written

as follows:

q[j] = q0.q1 · · · qj =

j
∑

i=0

qi · r
−i. (4)

The final quotient before rounding and normalization is q[n].

B. Normal-Binary Floating-Point Offline Division

In this paper, we use the normal binary system, so qi ∈
{0, 1, · · · , r− 1}. For x = d · q+ rem, the followings should
be satisfied for each j [19]:

0 ≤ rem[j] < d · r−j ⇔ 0 ≤ x− d · q[j] < d · r−j

⇔ 0 ≤ rj · (x− d · q[j]) < d. (5)

Similarly, q[j + 1] should satisfy the following:

0 ≤ rj+1 · (x− d · q[j + 1]) < d

⇔ 0 ≤ rj+1 · {x− d · (q[j] + qj+1 · r
−(j+1))} < d

⇔ 0 ≤ rj+1 · (x− d · q[j])− d · qj+1 < d. (6)

Define w[j] as follows:

w[j] = rj · (x− d · q[j]). (7)

Then qj+1 = k if the following is satisfied:

0 ≤ rj+1 · (x− d · q[j])− k · d < d.

⇔ k · d ≤ rj+1 · (x− d · q[j]) < (k + 1) · d. (8)

⇔ k · d ≤ r · w[j] < (k + 1) · d. (9)

Although this requires two inequalities, finding qj+1 requires
the evaluation of only r − 1 inequalities as follows:

0 ≤ r · w[j]− 1 · d,

0 ≤ r · w[j]− 2 · d,

· · ·

0 ≤ r · w[j]− (r − 1) · d. (10)

Suppose fk = 1 (or 0) if 0 ≤ r ·w[j]−k ·d is true (or false).

Then, the bit string F = (f1f2 · · · fr−1) is one of (000 · · · 0),
(100 · · · 0), (110 · · · 0), (111 · · · 0), or (111 · · · 1). Thus, we

can find qj+1 by evaluating the above inequalities and F . After

we find qj+1, we compute w[j + 1] = r · w[j]− d · qj+1.

The number of inequalities to evaluate goes up as r in-

creases, so r should be sufficiently small. We find that r = 2,

4, 8, and 16 are practical radices for the division.

C. Example: Radix-4 Offline Division

Suppose n = 4, r = 4, x = 1.20024, and d = 1.01124.

Since x ≥ d, q0 = 1 and w[0] = 0.12304.
Applying (10) leads to the following:

f1 : 0 ≤ 4 · 0.12304 − 1 · 1.01124 (True),

f2 : 0 ≤ 4 · 0.12304 − 2 · 1.01124 (False),

f3 : 0 ≤ 4 · 0.12304 − 3 · 1.01124 (False).

The bit string F = (f1f2f3) is (100), so q1 = 1. w[1] =
0.21224. Applying (10) results in the following:

f1 : 0 ≤ 4 · 0.21224 − 1 · 1.01124 (True),

f2 : 0 ≤ 4 · 0.21224 − 2 · 1.01124 (True),

f3 : 0 ≤ 4 · 0.21224 − 3 · 1.01124 (False).

F = (110), so q2 = 2. w[2] = 0.03304. For q3:

f1 : 0 ≤ 4 · 0.03304 − 1 · 1.01124 (False),

f2 : 0 ≤ 4 · 0.03304 − 2 · 1.01124 (False),

f3 : 0 ≤ 4 · 0.03304 − 3 · 1.01124 (False).

F = (000), so q3 = 0. w[3] = 0.33004. For q4:

f1 : 0 ≤ 4 · 0.33004 − 1 · 1.01124(True),

f2 : 0 ≤ 4 · 0.33004 − 2 · 1.01124(True),

f3 : 0 ≤ 4 · 0.33004 − 3 · 1.01124(True).

F = (111), so q4 = 3. q = 1.12034 and rem = x − d · q =
0.000013324 < d · ulp = 0.000120024, so it satisfies (3).

D. Interval-Analysis-Based Offline Division

The digit-selection function in the previous section is de-

rived from the definition of division (3). We can also derive

the digit-selection function from interval analysis as follows.
For x = d · q + rem, suppose we have obtained q[j] =

q0.q1 · · · qj . This means that x/d satisfies the following:

q[j] ≤
x

d
< q[j] + r−j . (11)

In this case, qj+1 = k if the following condition is satisfied:

q[j] + k · r−(j+1) ≤
x

d
< q[j] + (k + 1) · r−(j+1), (12)

which is shown in Fig. 2. Rearranging the terms in (12) leads

to (8), so (12) is exactly the same as the digit-recurrence

division algorithm. An advantage of the derivation of (12)

using interval analysis is that we can use it for online division

as shown in the next section.

IV. NORMAL-BINARY ONLINE DIVISION

A. Normal-Binary Online Division Algorithm

For x = d·q+rem, suppose x and d are partially given until
iteration j and we have obtained q from the partially-given x
and d until iteration j as follows:

x[j] = x0.x1 · · ·xa[j] =

a[j]
∑

i=0

xi · r
−i, (13)

d[j] = d0.d1 · · · db[j] =

b[j]
∑

i=0

di · r
−i, (14)

q[j] = q0.q1 · · · qc[j] =

c[j]
∑

i=0

qi · r
−i, (15)

qj+1=0

)[

q[j]

x

d

q[j]+r r-(j+1)q[j]+r-(j+1)

)[

For q[j]=q0.q1...qj

qj+1=r-1...

[)

q[j]+2 r-(j+1)

qj+1=1

)[
qj+1=2

)[

q[j]+3 r-(j+1). . .

Fig. 2. Interval-analysis-based offline division.

where a[j] and b[j] are the indices of the rightmost digits of
x and d, respectively, given until iteration j, and c[j] is the
index of the rightmost digit of q obtained until iteration j. In
this case, the range of x/d is as follows:

x

d
=

[(x

d

)

j,MIN
,
(x

d

)

j,MAX

]

, (16)

(x

d

)

j,MIN
=

xj,MIN

dj,MAX
=

x[j]

d[j] + r−b[j] − ulp
, (17)

(x

d

)

j,MAX
=

xj,MAX

dj,MIN
=

x[j] + r−a[j] − ulp

d[j]
. (18)

In this case, qc[j]+1 = k if the following is satisfied:

q[j] + k · r−(c[j]+1) ≤
(x

d

)

j,MIN
, (19)

(x

d

)

j,MAX
< q[j] + (k + 1) · r−(c[j]+1). (20)

Fig. 3 visualizes the condition for qc[j]+1 = k. We assume
that we have found q[j] = q0.q1 · · · qc[j] from x and d above,
so the following is satisfied:

q[j] ≤
x

d
< q[j] + r−c[j], (21)

which is shown in Fig. 3(a). If we split the range into r
sub-ranges of length r−(c[j]+1) and the range of x

d
is [q[j] +

k · r−(c[j]+1), q[j] + (k + 1) · r−(c[j]+1)), then qc[j]+1 = k as

shown in Fig. 3(b). (19) and (20) show the conditions.

However, the range of x
d

might not fall into a sub-range as

shown in Fig. 3(c). In this case, we cannot find qc[j]+1 from

the given x and d, and need more digits of x and/or d to find

qc[j]+1.
Now, we rewrite (19) as follows:

0 ≤ x[j]− (q[j] + k · r−(c[j]+1)) · (d[j] + r−b[j] − ulp). (22)

Similarly, we rewrite (20) as follows:

x[j] + r−a[j] − ulp− d[j] · (q[j] + (k + 1) · r−(c[j]+1)) < 0. (23)

Notice that most of the terms are shifted versions of q[j] and

d[j] except d[j] · q[j], which requires a multiplication.

B. Incremental Update of d[j] · q[j]

Evaluation of (22) and (23) requires d[j] · q[j]. However,

the multiplication of d[j] and q[j] is too costly and cannot

be completed in a cycle, so we present how to incrementally

update d[j] · q[j] in this section.
First of all, define m[i, j] as follows:

m[i, j] = (d0.d1 · · · di) · (q0.q1 · · · qj). (24)

Then, we can obtain m[i+ w, j + t] as follows:

m[i+ w, j + t] = m[i, j] + (d0.d1 · · · di) · (qj+1 · · · qj+t)

+r−(i+w) · (di+1 · · · di+w) · (q0.q1 · · · qj+t) (25)

qc[j]+1=0

)[

q[j]

x

d

q[j]+r r-(c[j]+1)

q[j]+r-(c[j]+1)

)[

For q[j]=q0.q1...qc[j]

qc[j]+1=r-1...

[)

q[j]+2 r-(c[j]+1)

qc[j]+1=1

)[

qc[j]+1=2

)[

q[j]+3 r-(c[j]+1)

(a)

)[

q[j]

x

d

q[j]+r r-(c[j]+1)

)[

qc[j]+1=k...

[)

q[j]+k r-(c[j]+1)

)[)[

q[j]+(k+1) r-(c[j]+1)

(b)

x

d)(
j,min

x

d)(
j,max

)[

q[j]

x

d

q[j]+r r-(c[j]+1)

)[

qc[j]+1=undecided...

[)

q[j]+k r-(c[j]+1)

)[)[

q[j]+(k+1) r-(c[j]+1)

(c)

x

d)(
j,min

x

d)(
j,max

. .

.

. .

.

. .

.

Fig. 3. Interval-analysis-based online division.

As long as w and t are small, we can incrementally compute

m[i + w, j + t] using m[i, j], carry-save adders (CSAs), and

a carry-propagate adder (CPA).

In addition, we need to incrementally update m in the two

cases as follows. First, if additional digits of d are given, we

should update m. Second, if we obtain an additional digit of

q, we should update m. Notice that we try to obtain one digit

of q in a cycle, so t = 1. For w, we find that w · log2 r ≤ 4
is a proper condition for the incremental update. For example,

w ≤ 4 if r = 2, w ≤ 2 if r = 4, and w = 1 if r = 16.

C. Example: Radix-4 Online Division

Suppose n = 4, r = 4, x = 1.20024, and d = 1.01124. We

also assume that one digits of x and d are given every clock

cycle starting from the most significant digits.

Since x and d have hidden 1’s in the IEEE floating-point

standard format, x0 = 1 and d0 = 1 are given at cycle 0 in

Table II. At cycle 1, x1 = 2 and d1 = 0 are given. Since

x[1] = 1.24 > d[1] = 1.04, q[1] = q0 = 1.

At cycle 2, x2 = 0 and d2 = 1 are given. (22) and (23)

for k = 0 are true and false, respectively. Similarly, applying

them for k = 1, 2, 3 leads to (true, true), (false, true), and

(false, true), respectively. Thus, k = 1 satisfies both (22) and

(23), whereas all the others do not satisfy at least one of (22)

and (23). Thus, q1 = 1 and q[2] = q0.q1 = 1.14.

At cycle 3, x3 = 0 and d3 = 1 are given. Applying (22) and

(23) for k = 0, 1, 2, 3 leads to (true, false), (true, false), (true,

true), and (false, true), respectively. Since k = 2 satisfies both

(22) and (23), q2 = 2 (q[3] = 1.124). At cycle 4, x4 = 2 and

d4 = 2 are given, and k = 0 satisfies both (22) and (23), so

q3 = 0 (q[4] = 1.1204). Since all digits of x and d have been

given, we just apply (22) and (23) for k = 0, 1, 2, 3 at cycle 5
and find q4 = 3 (q[5] = 1.12034).

TABLE II
AN EXAMPLE OF THE ONLINE DIVISION ALGORITHM. n = 4, r = 4,

x = 1.20024 , AND d = 1.01124 . WE ASSUME THAT ONE DIGITS OF x AND

d ARE GIVEN EVERY CLOCK CYCLE.

Cycle x d q

0 14 14
1 1.24 1.04 q = 14

2
1.204 1.014 q = 14

Apply (22) and (23). k = 0: (true, false), k = 1: (true, true),
k = 2: (false, true), k = 3: (false, true) ⇒ q = 1.14

3
1.2004 1.0114 q = 1.14

Apply (22) and (23). k = 0: (true, false), k = 1: (true, false),
k = 2: (true, true), k = 3: (false, true) ⇒ q = 1.124

4
1.20024 1.01124 q = 1.124
Apply (22) and (23). k = 0: (true, true), k = 1: (false, true),

k = 2: (false, true), k = 3: (false, true) ⇒ q = 1.1204

5
1.20024 1.01124 q = 1.2204
Apply (22) and (23). k = 0: (true, false), k = 1: (true, false),

k = 2: (true, false), k = 3: (true, true) ⇒ q = 1.12034

D. Online Division with Offline Operands

Suppose x and d are fully given at cycle 0 (offline division).
In this case, a[j] = b[j] = n for all j, so we can rewrite (22)
as follows:

0 ≤ x− (q[j] + k · r−(c[j]+1)) · d⇔ k · d ≤ rc[j]+1 · (x− d · q[j]), (26)

which is equivalent to the left side of (8) (c[j] = j in this
case). Similarly, we can rewrite (23) as follows:

rc[j]+1 · (x− d · q[j]) < (k + 1) · d, (27)

which is equivalent to the right side of (8). This proves that

(22) and (23) are equivalent to (8) if x and d are offline

operands. Thus, the online algorithm works as an offline

algorithm if x and d are fully given at cycle 0.

V. DIVIDER ARCHITECTURE AND HARDWARE

IMPLEMENTATION

In this section, we present hardware implementation of the

offline and online division algorithms.

A. Design Parameters, Input, and Output

1) Input: For offline division, the input consists of a divi-

dend x and a divisor d in IEEE floating-point standard format.

For online division, the input requires additional information

for the validness of the digits of the dividend and divisor. If

the significand of the dividend (or divisor) is y1 · · · yn, then we

assume that each digit has a separate valid bit (0: invalid, 1:

valid). The execution unit generating the dividend (or divisor)

has to generate the valid bits too. As shown in Table III, x
and d are the dividend and the divisor, respectively, and vx
and vd are the valid bits for x and d, respectively. For n = 4
and r = 4, for example, if x1 · · ·x4 = 12004 and only the

first two digits are valid, then vx is 1100.

2) Output: For offline division, the output consists of the

quotient q in IEEE floating-point standard format. For online

division, we also generate valid bits vq for the quotient.

Notice that the update of vq is sometimes delayed until the

last moment if rounding and normalization invert many bits.

For example, suppose n = 4, r = 4, and q = 1.033334.

TABLE III
DESIGN PARAMETERS AND CONSTANTS.

Description

x, d, q Dividend, divisor, quotient
vx, vd, vq Valid bits for x, d, q for online division

r Radix-r division (4 or 16)

w # digits of d used to update m (2 or 4 bits) in (25)

Rounding of it leads to q = 1.10004, so we cannot determine

the valid bits of all the four fractional digits of q before

rounding. However, this does not occur often because the carry

propagation due to rounding and normalization stops at digit qi
if qi < r − 1. Thus, if q[j] = q0.q1 · · · qc[j] and i is the index

of the rightmost digit whose value is less than r − 1, then

vq,1 = · · · = vq,i = 1 and vq,i+1 = · · · = vq,n = 0.

3) Design Parameters: Table III also shows two design

parameters for the hardware implementation of the divider.

In radix-r division, we try to obtain log2 r bits of the quotient

in a cycle. In this paper, we use 4 and 16 for r.

w is the number of unused digits of d to include in the

calculation of m = d[j] · q[j] in (25). As explained in

Section IV-B, w should be sufficiently small, so we use 2

bits or 4 bits for w.

B. Divider Architecture

Algorithm 1 shows a pseudo code of the divider. The first

step (Step 1) finds q0 by (22) and (23). First, we initialize

m (Line 2) and evaluate (22) and (23) for k = 0, · · · , r − 1.

If a certain k satisfies both, then q0 = k. We also compute

m = m[b, c] = (d0.d1 · · · db) · q0, which requires a few carry-

save adders and a carry-propagate adder. b is the index of the

rightmost valid digit of the divisor d and we find it by the

idx(vd) function (Line 5). We also store vd in vd,OLD, then

move on to Step 2 from the next cycle. If we cannot find q0,

we stay in Step 1 (Line 8). Regarding m = q0 ·dMIN, suppose

d is valid only down to the b-th digit, d0.d1 · · · db. In this case,

we do not assume that db+1 · · · dn is 0 · · · 0. Thus, when we

compute m, we reset the invalid digits db+1 · · · dn of d and

then multiply it by q0. dMIN is actually d0.d1 · · · db0 · · · 0.

Step 2 finds the rest of q (Line 11 to 20). First, we compare

the new vd received in the current cycle and the previous

value of vd (vd,OLD) (Line 11). If the number of new valid

digits in d received in the current cycle is greater than or

equal to w in Table III, then we update m incrementally

using (25) (Line 13). Also, we store the new valid bits in

vd,OLD (Line 14). For example, suppose vd,OLD = 1100 0000,

vd = 1111 1100, and w = 2. This means that d0.d1d2 was

valid previously and d0.d1 · · · d6 is valid in the current cycle.

Since w = 2, we update m by m+ = (0.00d3d4) · q and

vd,OLD becomes 1111 0000.

Then, we evaluate (22) and (23) for k = 0, · · · , r −
1 (Line 16). If both (22) and (23) are true for a certain k,

then qc+1 = k (Line 18) and we update m incrementally by

m← m+ dMIN · (k · r
−(c+1)) (Line 19). Notice that it is also

possible that none of the values of k satisfies both (22) and

Input: x (dividend), d (divisor), vx, vd (valid bits)
Output: q, vq
1: // Step 1 (q0)
2: b← −1, c← −1 for m[b, c]. m← 0.
3: Evaluate (22) and (23) for k = 0, · · · r − 1.
4: if Both (22) and (23) are true for a certain k then
5: q0 ← k, m← q0 · dMIN, c← 0, b← idx(vd), vd,OLD ← vd.
6: Execute Step 2 from the next cycle.
7: else
8: Stay in Step 1.
9: end if

10: // Step 2 (q1 · · · qn)
11: newd ← compare(vd, vd,OLD).
12: if newd ≥ w then
13: Update m incrementally. b← b+ 1.
14: vd,OLD ← arithmetic shift right(vd,OLD, w bits)
15: end if
16: Evaluate (22) and (23) for k = 0, · · · , r − 1.
17: if Both (22) and (23) are true for a certain k then
18: qc[j]+1 ← k
19: Update m incrementally. c← c+ 1.
20: end if

Algorithm 1: Pseudo code of the divider architecture

(23). This means that we cannot find qc+1 in this cycle from

the given x and d and we need more digits of x and/or d to

find qc+1.

C. Hardware Implementation

Fig. 4 shows the hardware implementation of the second

step (Step 2) of the proposed divider. The “Comp” unit

compares the current (vd) and previous (vd,OLD) valid bits

of the divisor d. If there are logr w unused digits of d[j] for

the computation of m, we extract them (dnew in the figure)

from d[j] and update m incrementally by m+ = q[j] · dnew.

We also generate the terms in (22) and (23) to evaluate the

inequalities. Then, we add the terms by CSAs and two CPAs

for each k = 0, · · · , r−1. If a certain k satisfies both (22) and

(23), then the next digit of q is k, so we update q. We also

generate mk = m+ (r−c[j] + 1 · k) · d[j] by CSAs and CPAs

for each k to reduce the execution time. If we find qc[j]+1 = k,

we update m just by selecting mk.

VI. SIMULATION RESULTS

In this section, we present simulation results for floating-

point division based on the IEEE Binary64 (double-precision)

standard. We implemented all the dividers using Verilog and

synthesized them using Synopsys Design Compiler and a

22nm standard cell library.

A. Dividers Used for the Comparison

We compare five offline and five online dividers shown in

Table IV. AN16 is a radix-8 divider using the radix-8 digit-

recurrence algorithm with a look-up table for quotient digit

selection [5]. SA17 is a radix-16 divider based on a radix-16

digit-recurrence algorithm with a wide digit set [6]. JB20 is

a radix-64 divider using three radix-4 iterations to obtain six

quotient bits in a cycle [7]. FF2 and FF4 are the radix-4 and

radix-16 normal-binary offline dividers, respectively.

AT03 is a radix-4 online divider [16]. It unfolds radix-2

recurrence equations to obtain two quotient bits in a cycle.

Decode

FFs

x[j], v
xv

d
v

d,OLD

Comp

d
newm

update m

q[j]

m += (q[j] d
new

)

Generate terms for (22) and (23)

d[j]

CSAs for k=0 CSAs for k=r-1...

(22) True? (23) True? (22) True? (23) True?

q
new

Update q

q[j]
MUX

m += (d[j] q
new

)

m
0

m
r-1

m
0 ...

m
r-1

CPAs for k=0 CPAs for k=r-1....

d[j], v
d

q[j], v
q

.

Fig. 4. Hardware implementation of the normal binary floating-point online
divider.

FNyw are the proposed dividers. y is 2 (radix-4) or 4 (radix-

16). w is the number of digits of d used to update m in (25).

w is 2 or 4 bits.

B. Offline Division

We first compare the dividers for an offline division.

Table IV shows the clock periods, execution times (of a

single offline division), energy, and areas of the dividers. The

numbers in the parentheses are the ratios compared to the

values of the FF2 design.

1) Execution Time: FF4 has the shortest execution time for

an offline division. AN16, SA17, and JB20 are 43%, 89%, and

63% slower than FF4, respectively. FF2 also shows shorter

execution time than AN16, SA17, and JB20 by 10%, 44%,

and 24%, respectively. FF2 has a shorter critical path than

FF4, so the clock period of FF2 is 180ps shorter than that of

FF4. However, FF2 finds two quotient bits per cycle while FF4

finds four quotient bits per cycle. As a result, FF4 outperforms

FF2 by 24%. Notice that the cost of FF4 is more silicon area

and energy consumption.

Although FF4 finds two more bits per cycle than FF2, its

clock period is only 180ps longer than FF2 for the following

reason. The most time-consuming part in the normal-binary

offline division algorithm is the calculation of (10) and the

decoding of the result. FF4 decodes a 15-bit string, whereas

FF2 decodes a 3-bit string, so the 15-bit decoder adds a 180ps

additional delay to the critical path. As a result, FF4 has a

slightly longer clock period than FF2.

The four online dividers have longer clock periods than

FF4 because they have much more complex logic and carry-

save addition stages for the computation of (22) and (23). In

addition, FN22 and FN24 obtain two quotient bits per cycle,

so they have longer execution times than FF4 and all the

other designs. However, FN42 and FF44 show execution times

comparable with JB20. AT03 is 108% slower than FF4 due to

its complex CSA stages.
The following shows the critical path of FF4:

CPA→ Decoder→ 15 : 1 Mux

TABLE IV
A COMPARISON OF THE DIVIDERS FOR A BINARY64 OFFLINE DIVISION. THE NUMBERS IN THE PARENTHESES ARE THE RATIOS COMPARED TO THE

VALUES OF THE FF2 DESIGN. BOTH THE EXECUTION TIME AND ENERGY ARE FOR ONE DIVISION OPERATION.

Offline dividers Online dividers
AN16 [5] SA17 [6] JB20 [7] FF2 FF4 AT03 [16] FN22 FN24 FN42 FN44

Radix 8 16 64 4 16 4 4 4 16 16
Clock period (ns) 0.71 1.21 1.36 0.46 0.64 0.63 0.72 0.78 0.92 0.99

Execution time (ns)
15.62 20.57 17.68 14.26 10.88 23.31 23.04 24.96 16.56 17.82
(1.10) (1.44) (1.24) (1.00) (0.76) (1.63) (1.62) (1.75) (1.16) (1.25)

Energy (pJ)
49.7 106.3 62.9 47.1 82.1 163.9 218.0 319.4 475.8 569.9

(1.05) (2.26) (1.34) (1.00) (1.74) (3.48) (4.63) (6.78) (10.10) (12.10)

Area (um2)
3,871 12,663 6,489 2,292 9,082 5,217 11,554 16,705 50,703 57,974
(1.69) (5.52) (2.83) (1.00) (3.96) (2.28) (5.04) (7.29) (22.12) (25.29)

5 10 15 20 25

0.5

1.0

1.5

2.0

FF2

AN16

SA17JB20

FF4

AT03 FN22
FN24

FN42
FN44

Normalized area

Normalized execution time

Fig. 5. Area vs. execution time for an offline division (Table IV). Both the
areas and execution times are normalized to the FF2 design.

The following shows the critical path of FN44:

Shifter→ 5 CSAs→ CPA→ 16 : 1 Mux

Fig. 5 shows normalized area vs. normalized execution time

of the dividers. Both the area and execution time values are

normalized to the FF2 design.

2) Energy Consumption and Area: FF2 consumes the least

amount of energy among all the dividers. In fact, AN16

consumes the lowest power. However, the execution time of

AN16 is 15.62ns, whereas that of FF2 is 14.26ns, so AN16

consumes 9% more energy than FF2. On the other hand,

the fastest offline divider FF4 consumes 74% more energy

than FF2 because FF4 evaluates 15 inequalities, whereas FF2

evaluates only three inequalities for (10). For the same reason,

FF4 consumes almost 4× more silicon area than FF2.

The online dividers consume much more energy and silicon

area than the offline dividers because they need more complex

logic to handle partially-given operands. AT03 consumes 3.3×
and 1.9× more energy than FF2 and FF4, respectively, and

2.28× more silicon area than FF2. Similarly, FN22, FN24,

FN42, and FN44 consume 4.6× to 12.1× more energy con-

sumption and 5.0× to 25.3× more silicon area than FF2.

However, notice that a very simple logic can be added to the

FN dividers to turn off the online logic part when the operands

are offline. In this case, the energy consumption will go down

dramatically.

C. Online Division

We compare execution times for online division in this

section. Notice that the offline dividers can start execution

only when all the digits of the operands are given. Thus, their

execution times are independent of the values of the operands.

AT03 has a fixed execution time in a different context. It needs

a so-called online delay (three cycles in [16]) before generating

quotient digits if it receives one digits of x and d every cycle.

On the contrary, the online dividers proposed in this paper

have variable-length execution times because they might not

be able to obtain a quotient digit in a cycle by the evaluation

of (22) and (23).

We simulated the following two cases. First, two bits of x
and d are given every cycle. Second, four bits of x and d are

given every cycle. We also assume that the generators of x
and d have the same clock period as the target divider.

Table V shows the results of the online division for the two

cases. When two bits of x and d are given every cycle, AT03

receives enough digits to find quotient digits. In addition, it

has a sufficiently low clock period, so it shows the shortest

execution time (14% as fast as FF2). FN22 and FN24 are 4.8%

and 10% slower than AT03, respectively, but they are faster

than FF2 and FF4. FN22 and FN24 have shorter execution

times than FN42 and FN44 because the latter do not receive

enough digits per cycle to obtain quotient digits.

The trend changes dramatically if four bits of x and d are

given every cycle. In this case, the execution times of FN42

and FN44 decrease significantly because they receive enough

digits to find quotient digits almost every cycle. The execution

times of the offline dividers also go down just because their

waiting time goes down. On the other hand, AT03, FN22, and

FN24 do not benefit from that because receiving two bits of

x and d every cycle is already enough for them, so receiving

four bits of x and d does not help them reduce the execution

time further. In this simulation, FN42 and FN44 are the best

designs with respect to the execution time. FN42 and FN44

are 23% and 19% as fast as AT03, respectively.

Fig. 6 shows normalized area vs. normalized execution time

of the dividers for the online division case in which four bits

of x and d are given every cycle. Both the area and execution

time values are normalized to the FF2 design.

TABLE V
A COMPARISON OF THE DIVIDERS FOR BINARY64 ONINE DIVISION. THE NUMBERS IN THE PARENTHESES ARE THE RATIOS COMPARED TO THE VALUES

OF THE FF2 DESIGN.

Offline dividers Online dividers
AN16 [5] SA17 [6] JB20 [7] FF2 FF4 AT03 [16] FN22 FN24 FN42 FN44

Radix 8 16 64 4 16 4 4 4 16 16
Execution time (ns) 34.08 52.03 53.04 26.22 27.52 23.31 23.76 24.96 29.44 30.69

Two bits of x and d are given per cycle (1.30) (1.98) (2.02) (1.00) (1.05) (0.89) (0.91) (0.95) (1.12) (1.17)

Execution time (ns) 24.85 36.30 35.36 20.24 19.20 23.31 23.76 24.96 17.48 18.32
Four bits of x and d are given per cycle (1.23) (1.79) (1.75) (1.00) (0.95) (1.15) (1.17) (1.23) (0.86) (0.90)

5 10 15 20 25

0.5

1.0

1.5

FF2

AN16

SA17JB20

FF4

AT03

FN22
FN24

FN42
FN44

Normalized area

Normalized execution time

Fig. 6. Area vs. execution time of the second online division case in Table V
in which four bits of x and d are given per cycle. Both the areas and execution
times are normalized to the FF2 design.

D. Discussion

The execution times of the online dividers are dependent

on the speed of the generators (the units sending x and d
to the online dividers). When an online divider computes a

quotient digit, it would not be able to find the digit if a

sufficient number of digits of the operands are not given to

the divider. Thus, if the generators are low-performance units,

then the execution times of the online dividers would go up

in Table V because the dividers sometimes have to wait for

more operand digits. On the contrary, even if the performance

of the generators goes up, the execution times of the online

dividers would not go up infinitely. The best cases for the

online dividers would be the offline cases shown in Table IV.

If the operands are irregularly given, the online dividers

might be able to benefit from that significantly. For example,

suppose most of the digits of the operands have been given,

but only a few last digits are missing. In this case, the offline

dividers still have to wait for the last digits, but the online

dividers can find most of the quotient digits. When the missing

digits are given, the online dividers can finish the division in

just a few cycles.

VII. CONCLUSION

In this paper, we proposed a normal-binary floating-point

dual-purpose division algorithm for both offline and online

division. The algorithm uses interval analysis to find quotient

digits from offline or online operands. The algorithm uses the

conventional binary number system and does not require any

convergence check. If four bits of the operands are given every

cycle, FN42 and FN44 achieve the shortest execution time at

the cost of larger area and more energy consumption (due to

the concurrent evaluation of the inequalities).

ACKNOWLEDGMENT

This work was supported by the Defense Advanced Research

Projects Agency (DARPA) Young Faculty Award under Grant

D16AP00119.

REFERENCES

[1] S. F. Oberman and M. J. Flynn, “Design Issues in Division and Other
Floating-Point Operations,” in IEEE Trans. on Computers, vol. 46, no. 2,
Feb. 1997, pp. 154–161.

[2] E. Matthews, A. Lu, Z. Fang, and L. Shannon, “Rethinking Integer
Divider Design for FPGA-based Soft-Processors,” in Proc. IEEE Annual
Int. Symp. on Field-Programmable Custom Computing Machines, 2019,
pp. 289–297.

[3] U. S. Patankar and A. Koel, “Review of Basic Classes of Dividers Based
on Division Algorithm,” in IEEE Access, vol. 9, Jan. 2021, pp. 23 035–
23 069.

[4] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean et al., “The
Microarchitecture of the Pentium 4 Processor,” in Intel Technology
Journal Q1, 2001, pp. 1–13.

[5] A. Nannarelli, “Performance/Power Space Exploration for Binary64
Division Units,” in IEEE Trans. on Computers, vol. 65, no. 5, May
2016, pp. 1671–1677.

[6] S. Amanollahi and G. Jaberipur, “Energy-Efficient VLSI Realization of
Binary64 Division with Redundant Number Systems,” in IEEE Trans.
on VLSI Systems, vol. 25, no. 3, Mar. 2017, pp. 954–961.

[7] J. D. Bruguera, “Low Latency Floating-Point Division and Square Root
Unit,” in IEEE Trans. on Computers, vol. 69, no. 2, Feb. 2020, pp.
274–287.

[8] F. Lyu, Y. Xia, Y. Chen, Y. Wang, Y. Luo et al., “High-Throughput Low-
Latency Pipelined Divider for Single-Precision Floating-Point Num-
bers,” in IEEE Trans. on VLSI Systems, vol. 30, no. 4, Apr. 2022, pp.
544–548.

[9] J. D. Bruguera, “Low-Latency and High-Bandwidth Pipelined Radix-64
Division and Square Root Unit,” in Proc. IEEE Int. Symp. on Computer
Arithmetic, 2022, pp. 10–17.

[10] K. Trivedi and M. Ercegovac, “On-Line Algorithms for Division and
Multiplication,” in IEEE Trans. on Computers, vol. C-26, no. 7, Jul.
1977, pp. 681–687.

[11] K. Trivedi, “Higher Radix On-Line Division,” in Proc. IEEE Int. Symp.
on Computer Arithmetic, 1978, pp. 164–174.

[12] O. Watanuki and M. Ercegovac, “Floating-Point On-Line Arithmetic:
Algorithms,” in Proc. IEEE Int. Symp. on Computer Arithmetic, 1981,
pp. 81–86.

[13] O. Watanuki and M. Ercegovac, “Floating-Point On-Line Arithmetic:
Error Analysis,” in Proc. IEEE Int. Symp. on Computer Arithmetic, 1981,
pp. 87–91.

[14] M. Ercegovac, “On-Line Arithmetic: An Overview,” in Real Time Signal
Processing VII: Proc. SPIE, vol. 495, 1984, pp. 86–93.

[15] P. K.-G. Tu and M. D. Ercegovac, “A Radix-4 On-Line Division
Algorithm,” in Proc. IEEE Int. Symp. on Computer Arithmetic, 1987,
pp. 181–187.

[16] A. F. Tenca, A. Shantilal, and M. Sinky, “A Radix-4 On-line Division
Design and Its Application to Networks of On-line Modules,” in
Proceedings of SPIE, vol. 5205, 2003, pp. 529–540.

[17] M. Ercegovac and T. Lang, Digital Arithmetic. Morgan Kauffmann,
2004.

[18] M. Ercegovac, “An On-Line Square Root Algorithm,” in IEEE Trans.
on Computers, vol. C-31, no. 1, Jan. 1982, pp. 70–75.

[19] M. Ercegovac and T. Lang, Division and Square Root: Digit-Recurrence
Algorithms and Implementation. Kluwer Academic Publishers, 1994.

[20] “IEEE Standard for Floating-Point Arithmetic,” http://ieee.org/.

